• 0664590639 Associazione Culturale (riservato ai soci)

Prodotti Notevoli

Prodotti Notevoli

I prodotti notevoli sono delle formule che ci consentono di trovare delle scorciatoie per il calcolo della moltiplicazione tra alcuni polinomi e del loro elevamento a potenza.

1) Somma per differenza o differenza di quadrati

La somma per differenza si presenta nella forma

(A+B)(A-B)

Se svolgessimo i calcoli con la normale moltiplicazione tra polinomi otterremmo

A^2-AB+AB+B^2

da cui, eliminando i termini opposti, otteniamo

(A+B)(A-B)=A^2-B^2

Una regola pratica per svolgere velocemente la somma per differenza è fare il quadrato del primo termine e sottrarre il quadrato del secondo.

Esercizi

2) Quadrato del binomio

Si presenta nella forma:

(A+B)^2 oppure (A-B)^2

Se scrivessimo la potenza in forma estesa potremmo scrivere (A+B)(A+B)

da cui eseguendo le moltiplicazioni:

(A+B)(A+B) = A^2+AB+AB+B^2 = A^2+ 2AB+B^2

si osserva quindi che il quadrato del binomio è composto dai quadrati dei due termini tra parentesi e dal doppio prodotto di questi due ( cioè il primo per il secondo per 2)
N.B. Se tra i due termini compare il segno negativo anziché quello positivo, il doppio prodotto è negativo anch’esso.

Pertanto

(A+B)^2= A^2+2AB+B^2
(A-B)^2= A^2-2AB-B^2

Esercizi

3) Cubo del binomio

Si presenta nella forma

(A+B)^3

Scritto in forma estesa otterremmo

(A+B)(A+B)(A+B)=(A^2+AB+AB+B^2)(A+B)=  (A^3+A^2B+A^2B+AB^2+A^2B+AB^2+AB^2+B^3)=(A^3+3A^2B+3AB^2+B^3)

Il cubo del binomio quindi è composto dal cubo dei due termini e dai tripli prodotti del quadrato del primo per il secondo e del quadrato del secondo per il primo.
N.B. Se uno dei due termini è negativo dobbiamo ricordarci che solo due termini su quattro saranno positivi. Infatti i cubo di un numero negativo è ancora un numero negativo ed inoltre anche uno dei tripli prodotti sarà negativo.

Pertanto

(A+B)^3= (A^3+3A^2B+3AB^2+B^3)
(A-B)^3= (A^3-3A^2B+3AB^2-B^3)

Esercizi

4) Quadrato del trinomio

Si presenta nella forma

(A+B+C)^2

Anche qui svolgiamo in i calcoli in forma estesa:

(A+B+C)(A+B+C)= A^2+AB+AC+AB+B^2+BC+AC+CB+C^2= A^2+B^2+C^2+2AB+2BC+2AC

Il quadrato del trinomio è quindi formato dai quadrati dei tre monomi e da tutti i doppi prodotti tra i monomi presi a coppie. E’ chiaro che se i monomi all’interno delle parentesi sono negativi i doppi prodotti potranno essere anch’essi negativi.

Pertanto

(A+B+C)^2= A^2+B^2+C^2+2AB+2BC+2AC
(A-B+C)^2= A^2+B^2+C^2-2AB-2BC+2AC
(A+B-C)^2= A^2+B^2+C^2+2AB-2BC-2AC
(A-B-C)^2= A^2+B^2+C^2-2AB-2BC-2AC

Esercizi


Leave a Reply